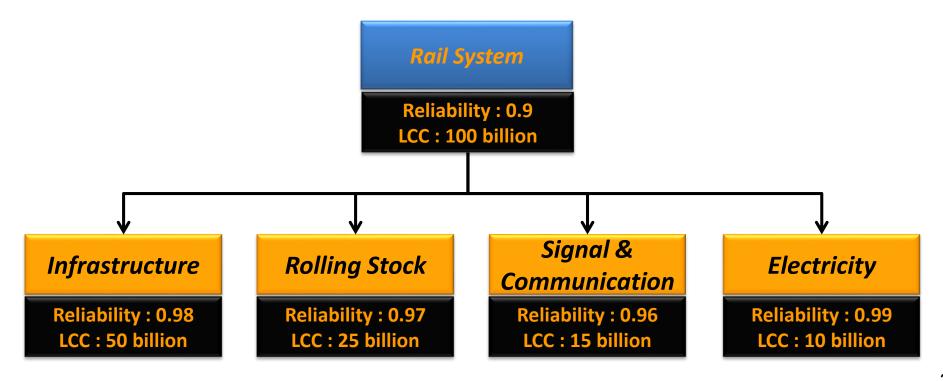


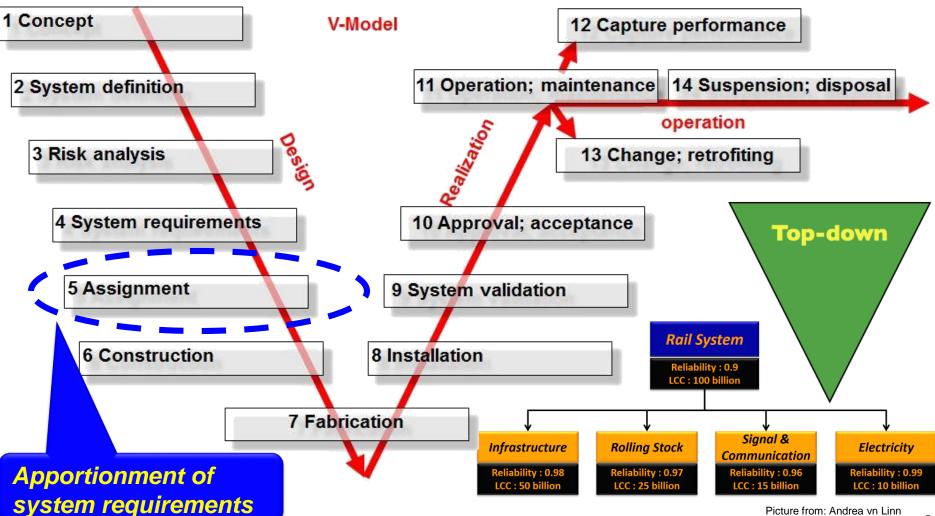
The 2nd Workshop on Railway Operation for Safety and Reliability

17 November 2017

Optimization of Passenger Railway System Design


Chia-Tsung Lu, Chun-Lin Lu, and Yung-Cheng (Rex) Lai Railway Technology Research Center National Taiwan University

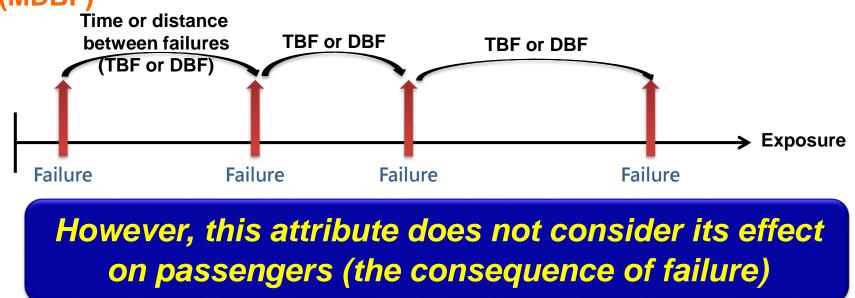
System design considers trade-off between cost and reliability



- A rail system consists of a number of subsystems, and each has its own cost and reliability
- Planners have to carefully allocate the reliability and budget by examining the trade-off between cost and reliability

Life Cycle of Railway System (V representation in EN50126)

Picture from: Andrea vn Linn


3

https://www.linkedin.com/pulse/r-m-roads-railways-data-centers-technical-systems-andreas-van-linn

System reliability cannot reflect its impact to passengers

- Various reliability allocation methods have been developed in the past.
 - Weighting Method
 - Optimization Method
- For rail system, reliability, so called system reliability, is defined as the mean time between failures (MTBF) or mean distance between failures (MDBF)

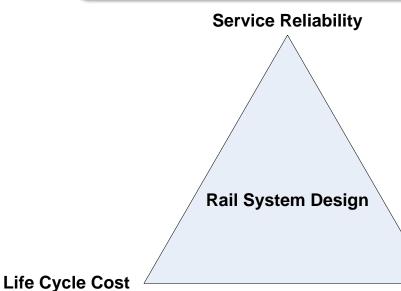
System Reliability vs. Service Reliability

Minor Train failure

MTBF: 100,000 train-hour

MTBF: 100,000 train-hour

- ✤ Failure frequency → MTBF → System Reliability
- ♦ Consequence of failure → Delay → Service Reliability


Both of them have same system reliability, but their effects on passengers are quite different.

From System Reliability to Service Reliability

- Service reliability (e.g. delay or on-time percentage) is more favorable than system reliability because it considers customers' satisfaction
- Service reliability can be obtained by the relationship between service reliability and system reliability

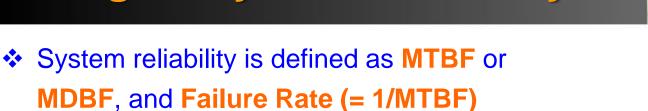
Service ReliabilityNo. of FailuresImpact to the customersEstimated Delay_{ik}= $\begin{pmatrix} Total Operational Time \\ MTBF_{ik} \end{pmatrix} \times (Average Delay)_{ik}$

Planners should balance the trade-off among service reliability, system reliability, and LCC in Rail System Design

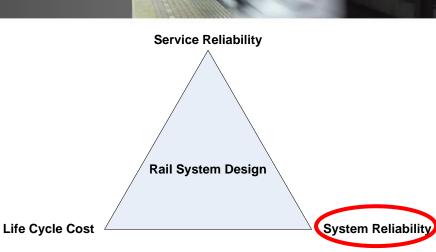
System Reliability

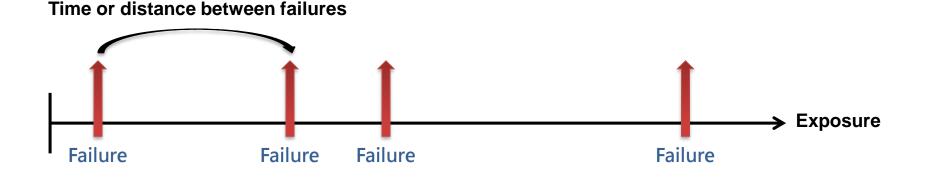
6

Key Elements in Rail System Design – LCC

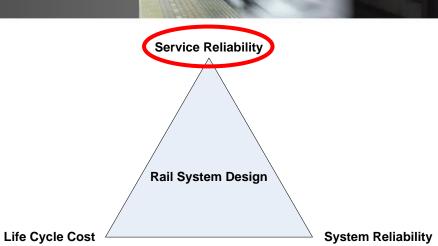


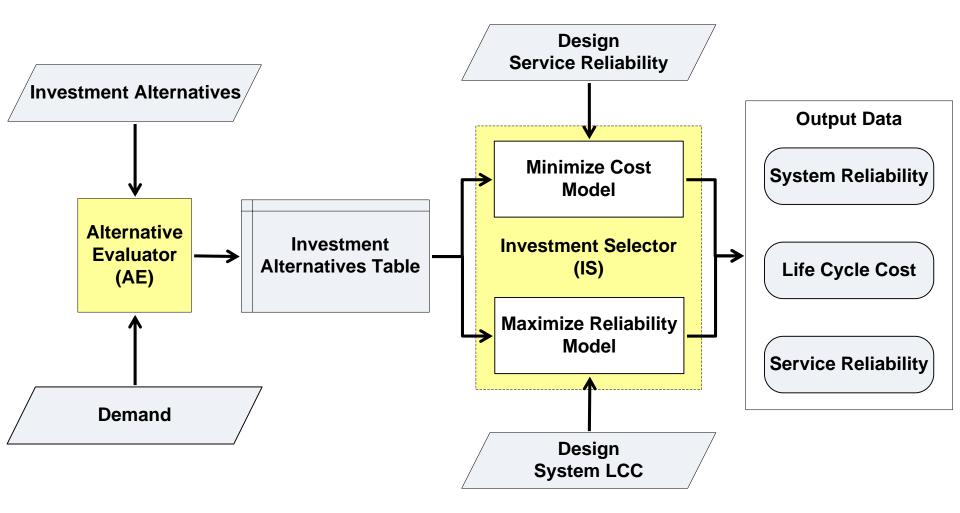
LCC for railway systems typically includes capital investment, operating cost, and maintenance cost within the planning period
Life Cycle Cost
Service Reliability
Rail System Design
System Reliability


LCC = Capital Cost + Operating Cost + Maintenance Cost


- Employing LCC is more appropriate in decision making than solely employing capital investment
 - Some products have low capital investment but high operating and maintenance costs (e.g. ballast track)
 - Others have high capital investment but low operating and maintenance costs (e.g. slab track)

Key Elements in Rail System Design – System Reliability


- The higher MTBF or MDBF results in higher system reliability
- Information about system reliability and LCC can be obtained from suppliers


Key Elements in Rail System Design – Service Reliability

- Service reliability identifies the effect on passengers
- Target Service Reliability On-time arrival percentage (with no buffer): proportion of on-time operations in terms of total system operating time (in train-hour)

Total Delay time (train-hour) **On-time arrival time (train-hour)** i∈J ×100% • r_{ser} **Total system operational time (train-hour)** On-time arrival percentage rser Total system operational time (in train-hour) Ρ in a defined period **On-time arrival percentage** Delay (in train-hour) of subsystem j within D_i = (service reliability) operational time or distance f_i^B Failure rate

Optimization Framework with MCM and MRM (1st Development)

Alternative Evaluator (AE)

- AE evaluates all possible alternatives and generates an investment alternative table with their LCC, system reliability, and service reliability
- Service reliability needs to be computed based on system reliability
 Number of failures

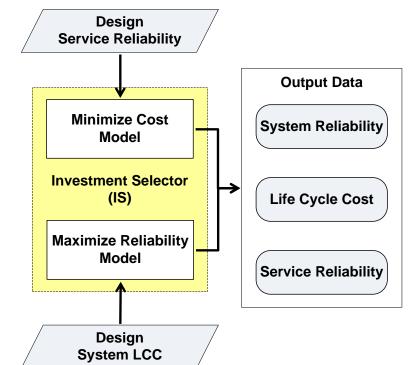
$$D_{ik} = \left(\frac{T_i}{M_{ik}}\right) NQ_{ik}$$

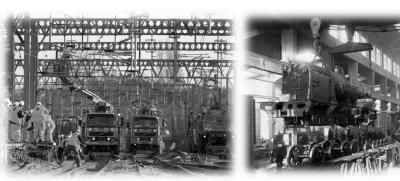
Average train delay

 $\forall i \in I, k \in K$

- D_{ik} = Delay (in train-hour) of subsystem *i* with alternative *k*
- M_{ik} = MTBF or MDBF of subsystem *i* with alternative *k*
- T_i = Operational time or distance of subsystem *i* in a defined period
- N = Average number of online trains
- Q_{ik} = Average delay (in hours) from a failure of subsystem *i* with alternative k
- Q_{ik} is estimated using historical data from similar systems or determined by simulations based on the service effect from possible types of failures

Alternative Evaluator (AE)


				Subsystem	Alternatives	MDBF (M _{ik})	LCC (C _{ik})	Delay (D _{ik})	
				(<i>i</i>)	(<i>k</i>)	(train-km)	billion dollars	(train-hours)	
					1	29,274	16.63	393	
			Train	2	39,799	16.76	289		
	tmont Altorn	ativos		Irain	3	62,192	17.05	185	
Investment Alternatives				:	:	:	:		
				1	29,274	20.86	2,144		
					2	38,521	22.48	1,629	
				Electricity	3	48,133	24.32	1,304	
	\checkmark					=		+	
	•] [•				
	Alternative				1	36,716	14.81	1,363	
	Evaluator (AE)		Investment	Track	2	56,073	15.31	892	
			Alternatives Table		3	64,959	17.05	770	
					:	:	:	:	
				Signal	1	29,274	30.03	1,110	
	1				2	31,039	31.01	1,047	
					3	39,799	36.45	817	
						÷		÷	
					1	36,716	8.56	3,395	
	Demand				2	53,899	9.75	2,313	
	Demanu	/	′ 🔨 🔪	Communication		78,465	11.77	1,589	
/		/				= , = = =	:		
					•				
					1	67,941	3.91	277	
				Station	2	84,846	1.95	222	
				Claudin	3	123,063	2.03	153 -	
					:	:	:	: 1	2


Investment Selector (IS)

- IS identifies the best alternative for every subsystem according to acceptable LCC or service reliability
 - Minimize Cost Model (MCM):
 Minimizing total LCC according to acceptable service reliability
 - Maximize Reliability Model (MRM): Maximizing service reliability according to available LCC

Minimize Cost Model

$$Min \quad \sum_{i \in I} \sum_{k \in K} C_{ik} \delta_{ik} \quad \longrightarrow \text{ Minimize total LCO}$$

S.t.
$$\sum_{k \in K} \delta_{ik} = 1$$
 $\forall i \in I$
 $d_i = \sum_{k \in K} D_{ik} \delta_{ik}$ $\forall i \in I$

→ Compute delay for each subsystem

$$\left(\frac{P - \sum_{i \in I} d_i}{P}\right) \times 100\% \ge R$$

→ Fulfill the service reliability requirement

and

$$\begin{split} & \delta_{ik} \in \left\{0,1\right\} & \forall i \in I, k \in K \\ & d_i \ge 0 & \forall i \in I \end{split}$$

Decision Variables					
δ_{ik}	whether alternative is selected				
d _i	the delay of subsystem i				
Parameters					
C _{ik}	LCC of alternative				
D _{ik}	delay of alternative				
Р	total operational time per year				
R	design service reliability				

Maximize Reliability Model

 $\left(\frac{P - \sum_{i \in I} d_i}{P}\right) \times 100\% \quad \longrightarrow \text{Maximize service reliability}$

S.t.
$$\sum_{k \in K} \delta_{ik} = 1$$
 $\forall i \in I$

$$d_i = \sum_{k \in K} D_{ik} \delta_{ik} \qquad \forall i \in I$$

 $\sum_{i \in I} \sum_{k \in K} C_{ik} \delta_{ik} \leq B$

Only one alternative can be chosen for a subsystem

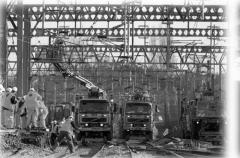
→ Compute delay for each subsystem

→ Constraint on LCC

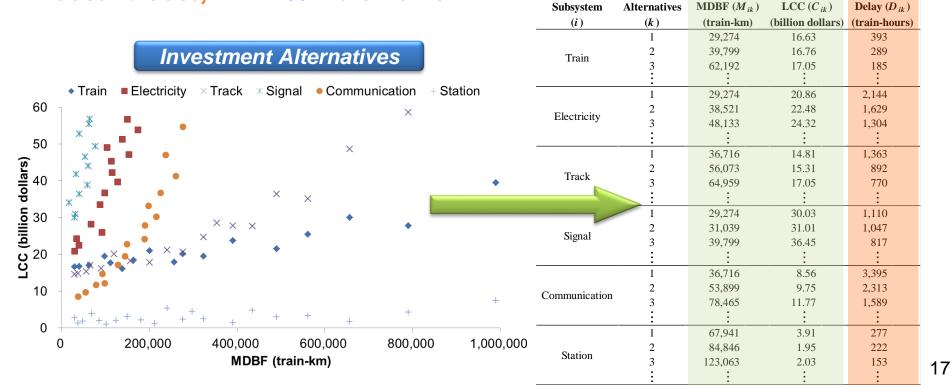
Decision Variables						
δ_{ik}	whether alternative is selected					
d _i	d _i the delay of subsystem i					
	Parameters					
Cik	LCC of alternative					
D _{ik}	delay of alternative					
P	total operational time per year					
B	design LCC					

and

$$\begin{split} & \delta_{ik} \in \left\{0,1\right\} & \forall i \in I, k \in K \\ & d_i \geq 0 & \forall i \in I \end{split}$$


Two case studies to demonstrate the potential use

- Two case studies with empirical data obtained from a rail system in Taiwan were performed to show the potential use of the proposed method
 - Case I : New System Design
 - Designing a new passenger rail system
 - Case II : Existing System Improvements
 - Improving the reliability of an existing rail system
 - ➤ Subject to constraint on available increment in LCC → MRM



Case I : New System Design

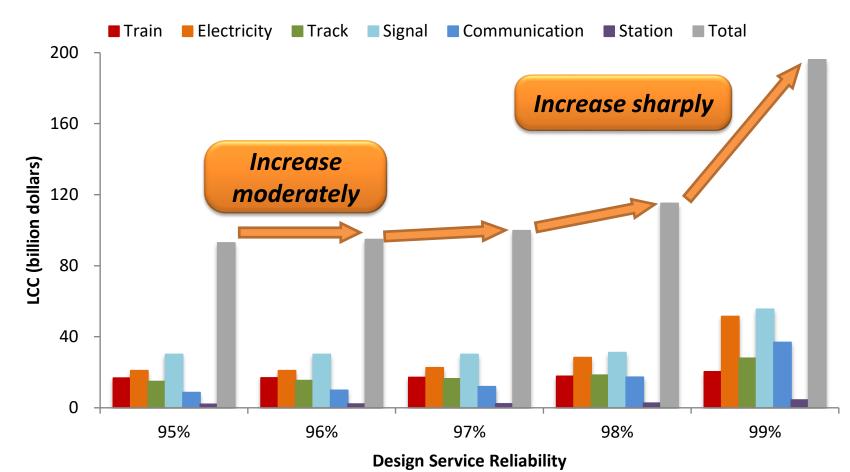
- 25-km passenger rail system
- Estimated demand is 140,000 passengers per day
- Six subsystems : train, signal, communication, electricity, station, and track
- Design service reliability (on-time arrival percentage) is from 95% to 99%, with 1% increments

High design service reliability results in high MDBF and LCC

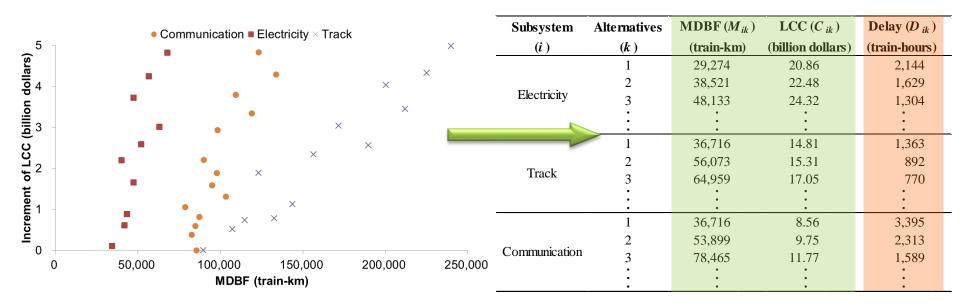

MCM efficiently solved this problem by using CPLEX within seconds

	Subovetom	Design Service Reliability					
	Subsystem	95%	96%	97%	98%	99%	
	Train	29,274	39,799	62,192	110,912	275,593	
	Electricity	29,274	29,274	38,521	66,422	137,907	
MDBF	Track	36,716	56,073	89,628	156,454	389,915	
(train-km)	Signal	29,274	29,274	29,274	31,039	62,192	
	Communication	36,716	53,899	78,465	127,670	225,146	
	Station	84,846	123,063	180,291	323,230	789,958	
	Train	16.63	16.76	17.05	17.71	20.18	
	Electricity	20.86	20.86	22.48	28.28	51.37	
LCC	Track	14.81	15.31	16.24	18.28	27.85	
(billion dollars)	Signal	30.03	30.03	30.03	31.01	55.42	
	Communication	8.56	9.75	11.77	17.21	36.79	
	Station	1.95	2.03	2.17	2.54	4.34	
	Total	92.83	94.75	99.74	115.04	195.94	

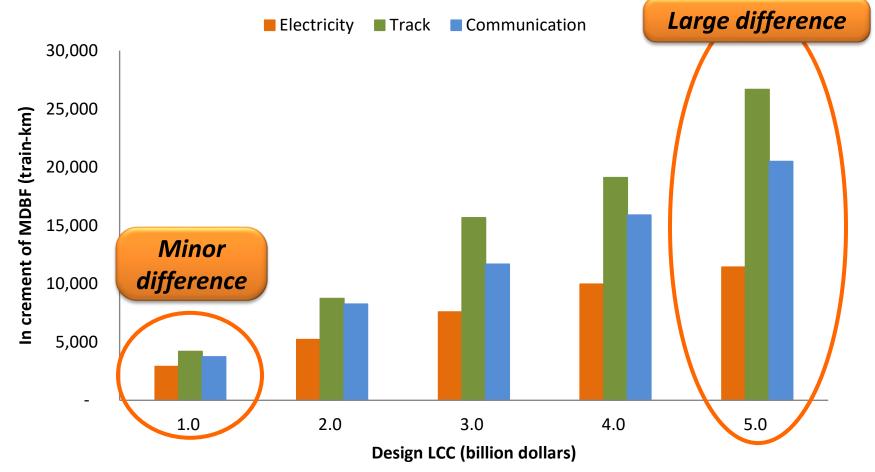
Resulting MDBF from MCM


 The difference in MDBF among subsystems becomes obvious as service reliability level increase

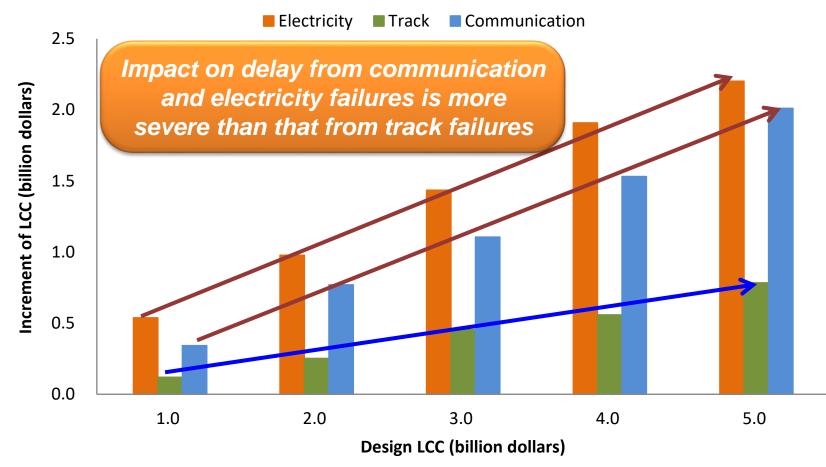
Resulting LCC from MCM

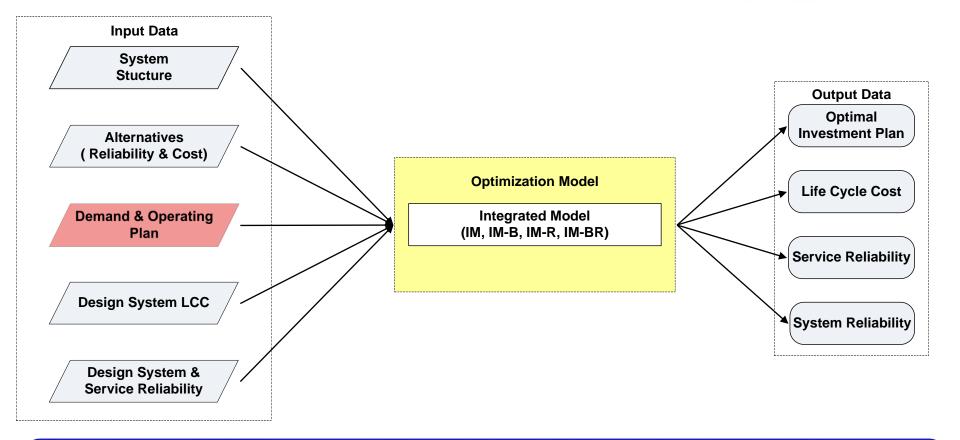

Increase in total LCC from 95% to 97% is modest but very sharp from 97% to 99% because of the nonlinear relationship between cost and reliability

Case II : Existing System Improvement


- Demand is the same as Case I and service reliability of the existing system is 97% with improvement LCC from 1 ~ 5 billions
- Not all of the subsystems can be easily changed so we consider alternatives for communication, electricity, and track in this case
- MRM efficiently solved this problem by using CPLEX within seconds

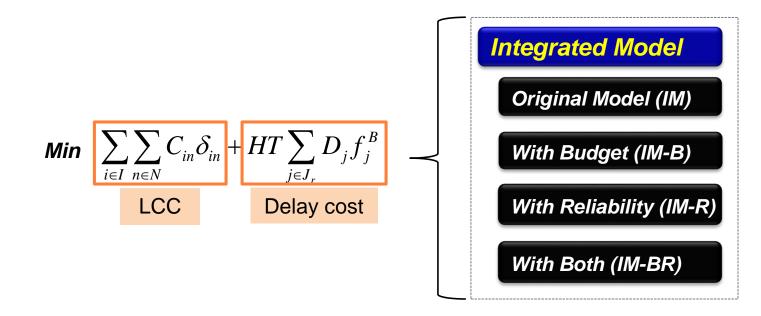
Resulting MDBF from MRM


Track has the most significant increase in MDBF, followed by communication and electricity


Resulting LCC from MRM

More LCC have been allocated to electricity, and communication for all scenarios

Optimization Framework with Integrated Model (2nd Development)



An integrated optimization framework for rail system design is developed by minimizing LCC and service unreliability (delay cost)

Integrated Model – Objective Function

The objective function considers the trade-off between cost and reliability, by minimizing total LCC and delay cost

- δ_{in} a binary variable denoting the selection of the alternative
- f_{i}^{B} a continuous variable denoting the failure rate of subsystem j

26

Types of Constraints

Group 1 – Alternatives Selection

$$\sum_{n \in N_i} \delta_{in} = 1 \qquad \forall i \in I, N_i \in N$$

$$\sum_{k \in K} y_{jk} = 1 \qquad \forall j \in J_r$$

$$\sum_{(i,n)\in V_k} \delta_{in} \leq y_{jk} + (U_j - 1) \qquad \forall k \in K_j, j \in J_r$$

Group 2 – Failure Rate Computation

$$f_{jk}^{C} \geq F_{in}^{C} + m(1 - y_{jk}) \qquad \forall (i,n) \in V_k, k \in K_j, j \in J_s$$

$$f_{jk}^{C} \geq \prod_{(i,n)\in V_{k}} F_{in}^{C} + m(1-y_{jk}) \quad \forall k \in K_{j}, j \in J_{p}$$

Group 3 – System Failure Rate

$$f_{j}^{B} \ge f_{jk}^{C} \quad \forall k \in K_{j}, j \in J_{r}$$
$$f \ge f_{j}^{B} \quad \forall j \in J_{r}$$

Group 4 – System Requirements

$$\sum_{k \in K} f_{jk}^{m} y_{jk} \leq G_{j} \quad \forall j \in J_{r}$$

$$f \leq E$$

$$\sum_{i \in I} \sum_{n \in N} C_{in} \delta_{in} \leq B$$

$$\left(\frac{P - \sum_{j \in J_{r}} D_{j} f_{j}^{B}}{P}\right) \times 100\% \geq R$$

Group 1 – **Alternatives Selection**

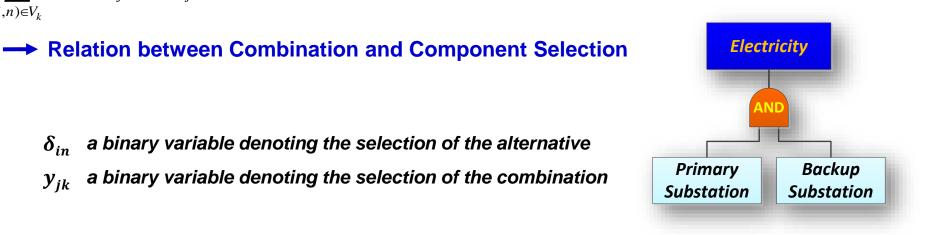
LCC(C_{in})

Delay (D_i)

$\sum \delta_{in} = 1$	$\forall i \in I, N_i \in N$
$n \in N_i$	

Component Selection

 $\sum y_{ik} = 1 \qquad \forall j \in J_r$ $k \in K$


Combination Selection

 $\sum \delta_{in} \le y_{jk} + (U_j - 1) \qquad \forall k \in K_j, j \in J_r$ $(i,n) \in V_k$

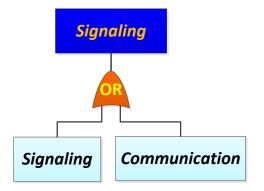
(i) *(i)* (F^C_{in}) (billion dollars) (train-hours) (n) 1 0.16 13.29 Primary 19.35 2 0.11 Electricity 3137.82 1 0.25 4.24 Backup 2 0.16 5.69

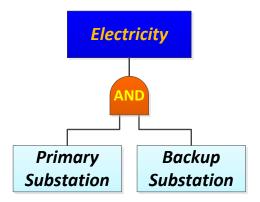
Subsystem Component Alternatives Failure Rate

Combination I

- δ_{in} a binary variable denoting the selection of the alternative
- a binary variable denoting the selection of the combination y_{ik}

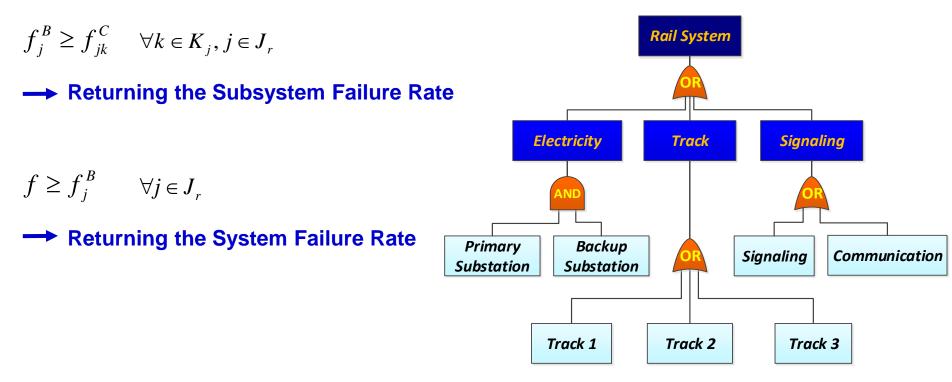
Group 2 – Failure Rate Computation


$$f_{jk}^{C} \geq F_{in}^{C} + m(1 - y_{jk}) \qquad \forall (i,n) \in V_k, k \in K_j, j \in J_s$$

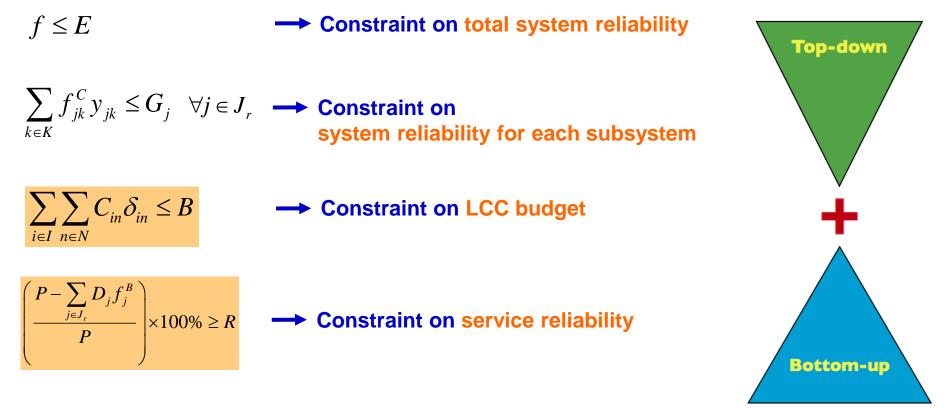

$$f_{jk}^{C} \geq \prod_{(i,n)\in V_{k}} F_{in}^{C} + m(1-y_{jk}) \quad \forall k \in K_{j}, j \in J_{p}$$

→ Failure Computation for Components with "AND" Relationship

- y_{jk} a binary variable denoting the selection of the combination
- f_{ik}^{C} a continuous variable denoting the failure rate of each combination k in subsystem j

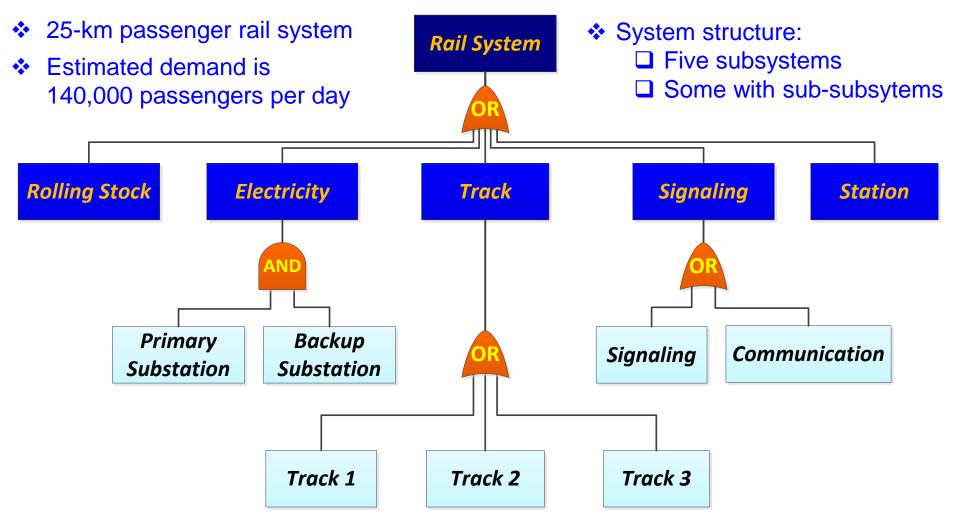


Group 3 – System Failure Rate

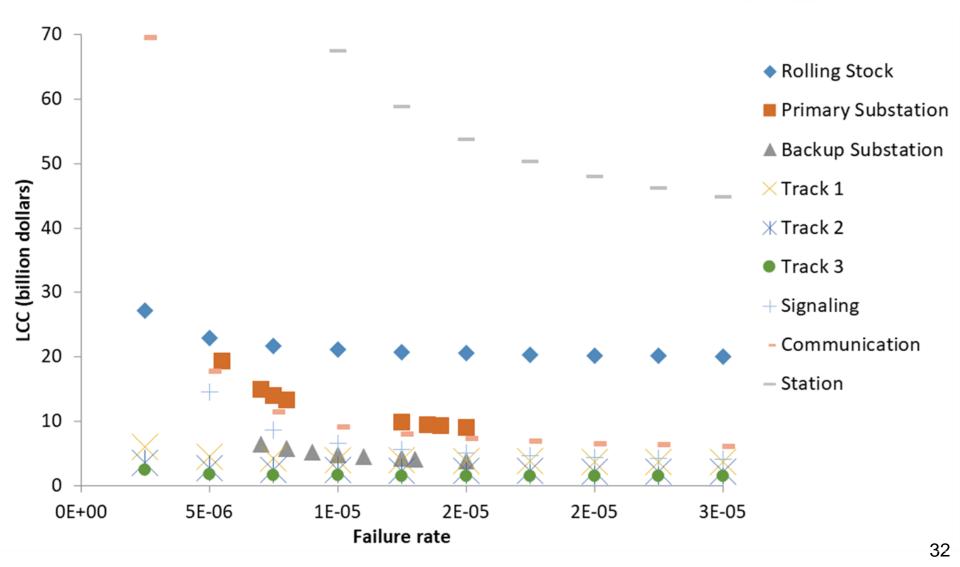


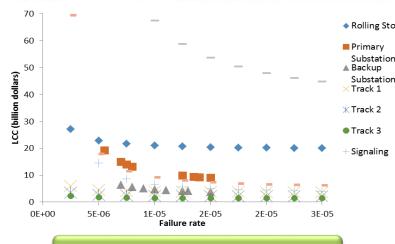
- f_{ik}^{c} a continuous variable denoting the failure rate of each combination k in subsystem j
- f_{i}^{B} a continuous variable denoting the failure rate of subsystem j
- f a continuous variable denoting the failure rate of the system

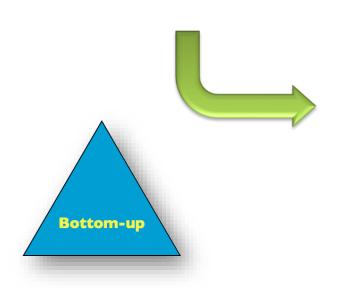
Group 4 – System Requirements



IM-B: IM + Constraint of LCCIM-R: IM + Constraint of service reliabilityIM-BR: IM + Constraints of LCC and service reliability


Case Study – New System Design


Alternatives with Specific Cost and System Reliability Information

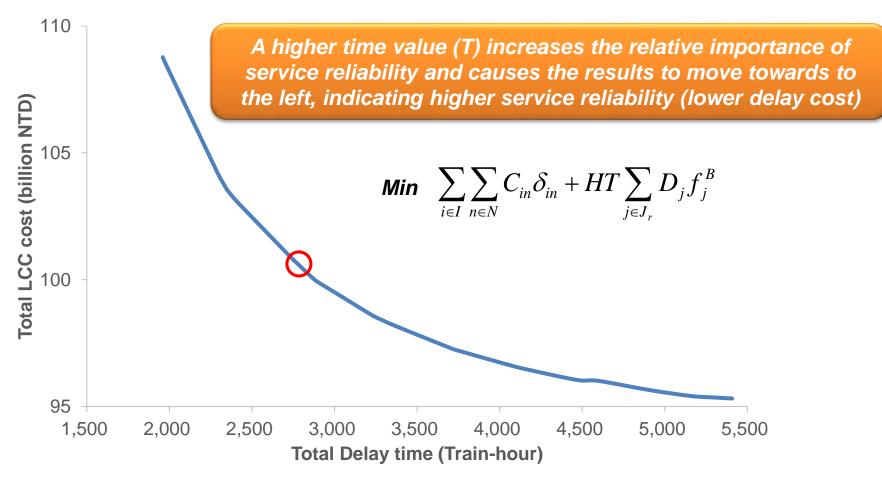


Investment Alternatives Table

Investment Alternatives

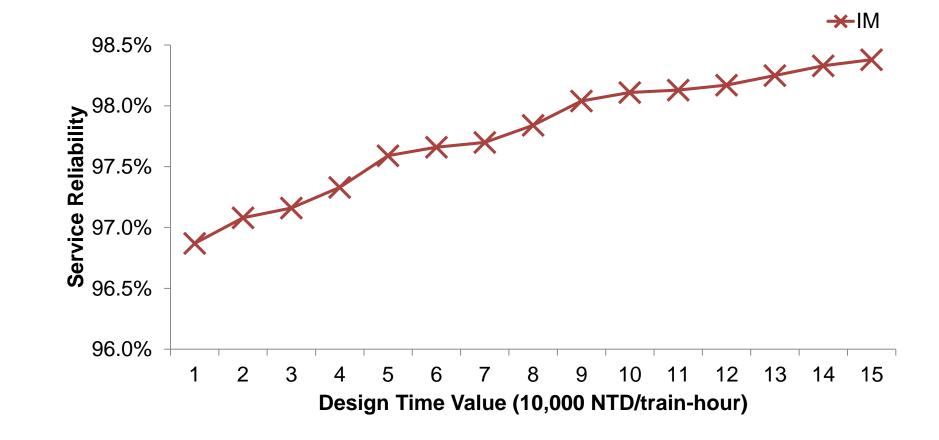
Subsystem	Component	Alternatives	Failure Rate	$LCC(C_{in})$	Delay (D_j)	
(j)	(<i>i</i>)	(n)	(F^{C}_{in})	(billion dollars)	(train-hours)	
		1	0.05	27.21		
Rolling Stock	Rolling	2	0.1 :	22.94 :	575.66	
		1	0.16	13.29		
	Primary	2 :	0.11	19.35 :		
Electricity		1	0.25	4.24	3137.82	
	Backup	2 :	0.16 :	5.69 :		
		1	0.05	5.98	2501.52	
	Track 1	2 :	0.1 :	4.57 :		
	Track 2	1	0.05	3.59		
Track		2 :	0.1 :	2.74 :		
		1	0.05	2.39		
	Track 3	2 :	0.1 :	1.83 :		
		1	0.05	73.50		
a . 1	Signaling	2 :	0.1 :	14.60 :	(222 20	
Signaling		1	0.05	69.38	6232.20	
	Communication	2 :	0.1 :	17.74 :		
		1	0.05	542.45		
Station	Station	2 :	0.1 :	134.12 :	942.15	

Optimal Investment Plan


- IM efficiently solved this problem by using CPLEX within seconds
- The resulting LCC is \$97.25 billion NTD, the total delay cost is \$7.23 billion NTD, and service reliability in on-time arrival rate is 97.84%.
- This allocation demonstrates the optimal balance between LCC and service reliability at a given design time value (T = 64,742 NTD/train-hour)

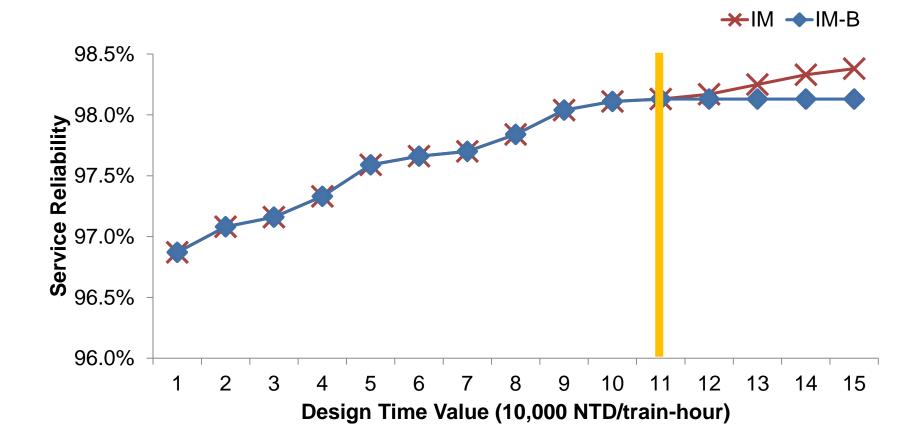
Subsystem	Failure rate	LCC (billion NTD)	Delay cost (billion NTD)
Rolling stock	2.50E-05	20.06	0.56
Electricity	4.50E-06	12.94	0.55
Track	1.00E-05	8.00	0.97
Signaling	1.75E-05	11.51	4.24
Stations	2.50E-05	44.75	0.92
Total		97.25	7.23

Pareto Front of Optimal Allocation



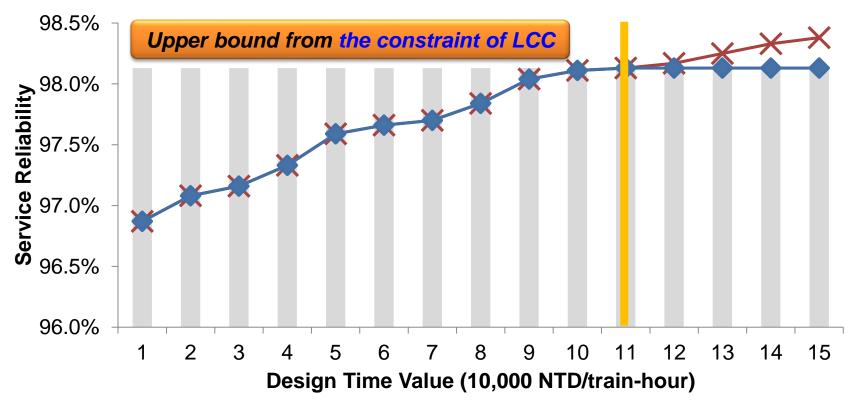
Each point is the optimal balance between LCC and service reliability at a specific time value.

The performance of IM with different design time value

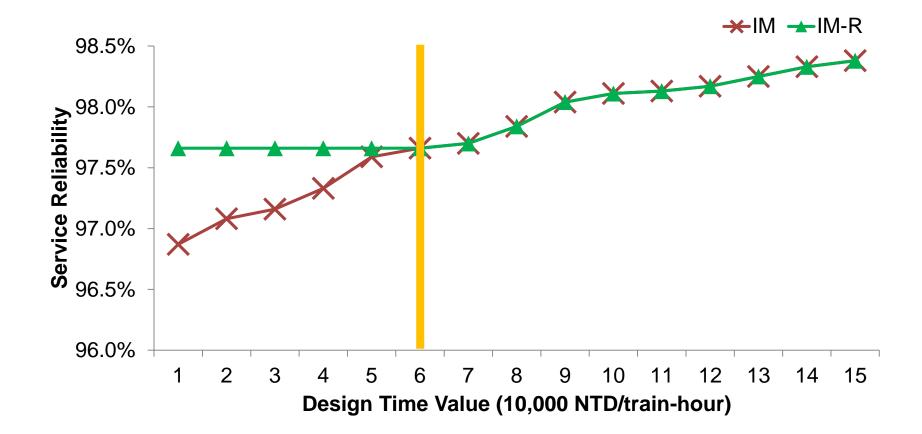


Higher time value results in higher service reliability

IM-B will be constrained by LCC budget



IM-B will be constrained by LCC budget


■UB of IM →IM →IM-B

IM-B will be constrained by 100 billion NTD LCC budget when design time value is more than about 110,000 NTD/train-hour

IM-R will be constrained by design service reliability

IM-R will be constrained by design service reliability

■LB of IM 🗡 IM 🛧 IM-R

98.5% 98.0% Service Reliability 97.5% Lower bound from the constraint of service reliability 97.0% 96.5% 96.0% 2 3 5 6 8 9 10 11 12 13 14 15 1 4 7 Design Time Value (10,000 NTD/train-hour)

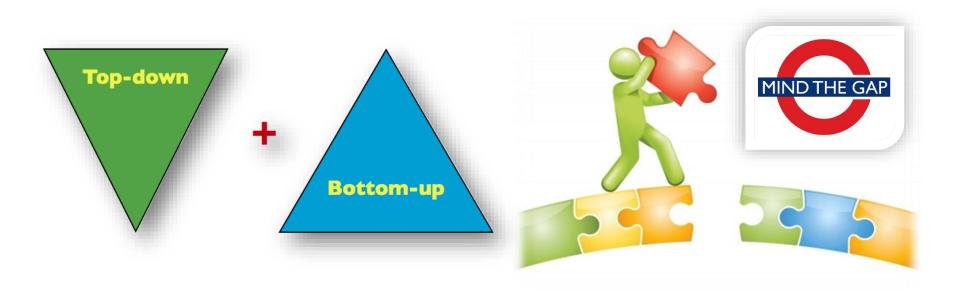
IM-R will be constrained by 97.7% service reliability when design time value is less than about 60,000 NTD/train-hour

IM-BR will be constrained by both LCC and service reliability

UB of IM LB of IM +IM -IM-BR 98.5% 98.0% Service Reliability 97.5% 97.0% 96.5% 96.0% 2 13 3 5 6 8 9 10 11 12 14 15 1 4 7 Design Time Value (10,000 NTD/train-hour)

IM-BR is constrained by budget and service reliability; it has the same trend as IM in terms of time value between 60,000~110,000 NTD/train-hour

IM-BR will be constrained by both LCC and service reliability


UB of IM LB of IM +IM +IM-B +IM-R +IM-BR 98.5% **Service Reliability** 97.5% 97.0% 96.5% 98.0% IM=IM-R IM=IM-BR 96.5% IM=IM-B 96.0% 13 2 3 8 9 12 14 15 1 4 5 6 10 11 Design Time Value (10,000 NTD/train-hour)

This integrated model framework is flexible according to planners' need in rail system design

- This research develops an optimization process to assist decision makers in optimally allocating service reliability, system reliability, and LCC
- It is essential to incorporate service reliability in rail system design

The proposed tool can help railways maximize their return on investment and provide reliable service to passengers

References

- Lai, Y.C., Lu, C.T., and Lu, C.L. (2017) A Comprehensive Approach to Allocate Reliability and Cost in Passenger Rail System Design. Transportation Research Record - Journal of the Transportation Research Board, Vol. 2608, 86–95.
- Lai, Y.C., Lu, C.T., and Hsu, Y.W. (2015) Optimal Allocation of Life Cycle Cost, System Reliability, and Service Reliability in Passenger Rail System Design, Transportation Research Record - Journal of the Transportation Research Board, Vol. 2475, 46-53.

Thank You!

Railway Technology Research Center at National Taiwan University

> NTU Civil Research Building, Rm 907 No.188, Sec. 3, Xinhai Rd., Da-an Dist., Taipei City 106, Taiwan Telephone Number: +886-2-3366-4362 Email: yclai@ntu.edu.tw Website: http://www2.ce.ntu.edu.tw/~railway/